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Detecting a currency’s dominance or dependence using foreign exchange network trees
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In a system containing a large number of interacting stochastic processes, there will typically be many
nonzero correlation coefficients. This makes it difficult to either visualize the system’s interdependencies,
or identify its dominant elements. Such a situation arises in foreign exchange (FX), which is the world’s

biggest market. Here we develop a network analysis of these correlations using minimum spanning
trees (MSTs). We show that not only do the MSTs provide a meaningful representation of the global FX
dynamics, but they also enable one to determine momentarily dominant and dependent currencies. We find that
information about a country’s geographical ties emerges from the raw exchange-rate data. Most importantly
from a trading perspective, we discuss how to infer which currencies are “in play” during a particular period

of time.
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I. INTRODUCTION

There is enormous interest in the properties of complex
networks [1-3]. There has been an explosion of papers
within the physics literature analyzing the structural proper-
ties of biological, technological, and social networks;
the main results of which are summarized in [3]. Such
networks or “graphs,” contain n nodes or “vertices” {i} con-
nected by M connections or “edges.” In the case of physical
connections, such as wires or roads, it is relatively easy
to assign a binary digit (i.e., 1 or 0) to the edge between any
two nodes i and j according to whether the corresponding
physical connection exists or not. However, for social
networks such as friendship networks [3], and biological
networks such as reaction pathways [3], the identification of
network connections is less clear. In fact it is extremely
difficult to assign any particular edge as being a definite
zero or one—instead, all edges will typically carry a weight-
ing value p; which is analog rather than binary, and which
is in general neither equal to zero nor to one. The analysis
of such weighted networks is in its infancy, in particular with
respect to their functional properties and dynamical evolu-
tion [4]. The main difficulty is that the resulting network
is fully connected with M=n(n—1) connections between all
n nodes. In symmetric situations where p;;=p;, this reduces
to M=n(n—1)/2 connections, but is still large for any
reasonable 7.

An interesting example of such a fully connected
weighted network is provided by the set of correlation coef-
ficients between n stochastic variables. Each node i corre-
sponds to the stochastic variable x,(z) where i=1,2,...,n,
and each of the n(n—1)/2 connections between pairs of
nodes carries a weight given by the value of the correlation
coefficient p;; (see definition below). For any reasonable
number of nodes the number of connections is very large
[e.g., for n=110, n(n—1)/2=5995] and hence it is extremely
difficult to deduce which correlations are most important for
controlling the overall dynamics of the system. Indeed, it

1539-3755/2005/72(4)/046106(11)/$23.00

046106-1

PACS number(s): 89.75.Fb, 89.75.Hc, 89.65.Gh

would be highly desirable to have a simple method for de-
ducing whether certain nodes, and hence a given subset of
these stochastic processes, are actually “controlling” the cor-
relation structure [5]. In the context of financial trading, such
nodal control would support the popular notion among trad-
ers that certain currencies can be “in play” over a given time
period. Clearly such information could have important prac-
tical consequences in terms of understanding the overall dy-
namics of the highly connected foreign exchange (FX) mar-
ket. It could also have practical applications in other areas
where n intercorrelated stochastic processes are operating in
parallel.

With this motivation, we present here an analysis of the
correlation network in an important real-world system,
namely the financial currency (i.e., FX) markets. Although
the empirical analysis presented is obtained specifically
for this financial system, the analysis we provide has more
general relevance to any system involving n stochastic vari-
ables and their n(n—1)/2 correlation coefficients. There is
no doubt that currency markets are extremely important
[6]—indeed, the recent fall in the value of the dollar against
other major currencies is quite mysterious, and has attracted
numerous economic “explanations” to reason away its dra-
matic decline. The currency markets, which represent the
largest market in the world, have daily transactions totalling
trillions of dollars, exceeding the yearly GDP (gross domes-
tic product) of most countries.

The technical approach which we adopt is motivated by
recent research within the physics community by Mantegna
and others [7-14] and concerns the construction and analysis
of minimum spanning trees (MST), which contain only
n—1 connections. Mantegna and co-workers focused mainly
on equities—by contrast, we consider the case of FX markets
and focus on what the time-dependent properties of the MST
can tell us about the FX market’s evolution. In particular, we
investigate the stability and time-dependence of the resulting
MST and introduce a methodology for inferring which cur-
rencies are “in play” by analyzing the clustering and leader-
ship structure within the MST network.
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The application of MST analysis to financial stock (i.e.,
equities) was introduced by the physicist Rosario Mantegna
[7]. The MST gives a “snapshot” of such a system; however,
it is the temporal evolution of such systems, and hence
the evolution of the MSTs themselves, which motivates our
research. In a series of papers [10-12], Onnela er al. ex-
tended Mantegna’s work to investigate how such trees
evolve over time in equity markets. Here we follow a similar
approach for FX markets. One area of particular interest
in FX trading—but which is of interest for correlated sys-
tems in general—is to identify which (if any) of the curren-
cies are “in play” during a given period of time. More
precisely, we are interested in understanding whether particu-
lar currencies appear to be assuming a dominant or depen-
dent role within the network, and how this changes
over time. Since exchange rates are always quoted in terms
of the price of one currency compared to another, this is a
highly nontrivial task. For example, is an increase of the
value of the euro versus the dollar primarily because of
an increase in the intrinsic value of the euro, or a decrease in
the intrinsic value of the dollar, or both? We analyze FX
correlation networks in an attempt to address such questions.
We believe that our findings, while directly relevant to FX
markets, could also be relevant to other complex systems
containing n stochastic processes whose interactions evolve
over time.

II. MINIMUM SPANNING TREE (MST)

Given a correlation matrix (e.g., of financial returns)
a connected graph can be constructed by means of a trans-
formation between correlations and suitably defined dis-
tances [8]. This transformation assigns smaller distances to
larger correlations [8]. The MST, which only contains n—1
connections, can then be constructed from the resulting hier-
archical graph [8,15]. Consider n different time series, x;
where i € {1,2,...,n}, with each time series x; containing N
elements (i.e., N time steps). The corresponding n X n corre-
lation matrix C can easily be constructed, and has elements
C;;=p;; where

(i) = () (1)

O'iO'j

pi./
where (---) indicates a time-average over the N data points
for each x;, and o; is the sample standard deviation of the

time series x;. From the form of p;; it is obvious that C is a
symmetric matrix. In addition,

D - ()

Pii o2

1

=1, Vi (2)

hence all the diagonal elements are identically 1. Therefore
C has n(n—1)/2 independent elements. Since the number of
relevant correlation coefficients increases like n%, even a
relatively small number of time series can yield a correlation
matrix which contains an enormous amount of information—
arguably “too much” information for practical purposes. By
comparison, the MST provides a skeletal structure with only

n—1 links, and hence attempts to strip the system’s complex-
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ity down to its bare essentials. As shown by Mantegna, the
practical justification for using the MST lies in its ability to
provide economically meaningful information [7,8]. Since
the MST contains only a subset of the information from the
correlation matrix, it cannot tell us anything which we could
not (in principle) obtain by analyzing the matrix C itself.
However, as with all statistical tools, the hope is that it can
provide an insight into the system’s overall behavior which
would not be so readily obtained from the (large) correlation
matrix itself.

To construct the MST, we first need to convert the corre-
lation matrix C into a “distance” matrix D. Following Refs.
[7,8], we use the nonlinear mapping

d;i(pij) =V2(1 = p;y) (3)

to get the elements d;; of D [16]. Since —1<p;;<1, we have
0=d,;;=2. This distance matrix D can be thought of as rep-
resenting a fully connected graph with edge weights d;;. In
the terminology of graph theory, a “forest” is a graph where
there are no cycles [17] while a “tree” is a connected forest.
Thus a tree containing n nodes must contain precisely n—1
edges [3,17]. The minimum spanning tree T of a graph is the
tree containing every node, such that the sum Edi.erij is a
minimum. There are two methods for constrlicting the
MST—KTruskal’s algorithm and Prim’s algorithm [9]. We
used Kruskal’s algorithm, details of which are given in [18].

While the impetus for this research came from the MST
work of Mantegna and colleagues in the econophysics com-
munity, the task of finding a hierarchical clustering of a set of
time series falls firmly within the established field of cluster
analysis. There are two distinct steps necessary in a cluster
analysis. First one must define a meaningful distance be-
tween the objects one wishes to cluster (the distance mea-
sure), then one can implement a clustering procedure to
group the objects together. An introduction to the most com-
mon distance measures and clustering methods is given in
[19], which also contains evidence that the choice of cluster-
ing procedure has more effect on the quality of the clustering
than the distance measure chosen.

The clustering procedure used to form the MST is known
in cluster analysis as the single-linkage clustering method
(also known as the nearest-neighbor technique) [20,21]. This
is the simplest of an important group of clustering methods
known collectively as agglomerative hierarchical clustering
methods. The main problem with the MST (single-linkage
method) is that it has a tendency to link poorly clustered
groups into “chains” by successively joining them through
their nearest neighbors. Hence one would expect the hierar-
chy produced by the MST to represent larger distances (an-
ticorrelated) less reliably than the smaller distances (highly
correlated). Since we are attempting to identify highly clus-
tered groups this will not be a problem. However, in other
situations—for example, if one were attempting to use an
MST to identify poorly correlated or anticorrelated stocks for
use in portfolio theory—it may be preferable to use a more
sophisticated clustering method.
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III. DATA B. Data filtering
A. Raw data As with all real-world systems, the issue of what consti-

The empirical currency data that we investigated are
hourly, historical price-postings from HSBC Bank’s database
for nine currency pairs together with the price of gold from
01/04/1993 to 12/30/1994 [22]. Gold is included in the study
because there are similarities in the way that it is traded, and
in some respects it resembles a very volatile currency. The
currency pairs under investigation are AUD/USD, GBP/
USD, USD/CAD, USD/CHF, USD/JPY, GOLD/USD, USD/
DEM, USD/NOK, USD/NZD, USD/SEK [23]. In the termi-
nology used in FX markets [23], USD/CAD is
counterintuitively the number of Canadian dollars (CAD)
that can be purchased with one US dollar (USD). We must
define precisely what we mean by hourly data, as prices are
posted for different currency pairs at different times. We do
not want to use average prices since we want the prices we
are investigating to be prices at which we could have ex-
ecuted trades. Hence for hourly data, we use the last posted
price within a given hour to represent the (hourly) price for
the following hour.

We emphasize that the n stochastic variables which we
will analyze correspond to currency exchange rates
and hence measure the relative values of any two currencies.
It is effectively meaningless to ask the absolute value
of a given currency, since this can only ever be measured
with respect to some other financial good. Thus each cur-
rency pair corresponds to a node in our network. We are
concerned with the correlations between these currency ex-
change rates, each of which corresponds to an edge between
two nodes. A given node does not correspond to a single
currency.

tutes correct data is complicated. In particular, there are some
subtle data-filtering (or so-called “data-cleaning”) issues
which need to be addressed. Such data problems are, by
contrast to the physical sciences, a reality in most disciplines
which deal with human time scales and activity. In our
specific case, we are interested in calculating both the instan-
taneous and lagged correlations between exchange-rate
returns. Hence it is necessary to ensure that (a) each time
series has an equal number of posted prices; and (b) the nth
posting for each currency pair corresponds, to as good an
approximation as possible, to the price posted at the same
time step 7, for all ne{l,...,N}. For some of the hourly
time steps, some currency pairs have missing data. The best
way to deal with this is open to interpretation. Is the data
missing simply because there has been no price change dur-
ing that hour, or was there a fault in the data-recording sys-
tem? Looking at the data, many of the missing points do
seem to occur at times when one might expect the market to
be illiquid. However, sometimes there are many consecutive
missing data points—even an entire day. This obviously re-
flects a fault in the data recording system. To deal with such
missing data we adopted the following protocol. The FX
market is at its most liquid between the hours of 08:00 and
16:00 GMT [24]. In an effort to eradicate the effect of “zero
returns” due to a lack of liquidity in the market—as opposed
to the price genuinely not moving in consecutive trades—we
only used data from between these hours [25]. Then, if the
missing data were for fewer than three consecutive hours, the
missing prices were taken to be the value of the last quoted
price. If the missing data were for three or more consecutive
hours, then the data for those hours were omitted from the
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FIG. 2. (Color online) The minimum spanning tree representing the correlations between all hourly cross-rate returns from the years 1993

and 1994.

analysis. Since we must also ensure completeness of the data
at each point, it is then necessary that the data for those hours
are omitted from all currency pairs under investigation
[26,27]. We believe that this procedure provides a sensible
compromise between the conflicting demands of incorporat-
ing all relevant data, and yet avoiding the inclusion of spu-
rious zero returns which could significantly skew the data.
Finally, the data was checked to ensure that there were no
outlying data points.

C. Foreign exchange data

In addition to the problems outlined above which are
common to the analyses of all such real-world data, there

are further issues that are specific to FX data and which
make the study of FX and equities fundamentally different.
When producing the MST for the returns of the stock which
make up the FTSE100 index, one calculates the returns
from the values of the price of the stock in the same
currency—specifically, UK pounds (GBP). With FX data,
however, we are considering exchange rates between
currency pairs. Thus should we consider GBP/USD or USD/
GBP? And does it indeed make a difference which one
we use? Since the correlation is constructed to be normalized
and dimensionless, one might be tempted to think that it
does not matter since the value of the correlation will be
the same and only the sign will be different. However, it
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FIG. 3. (Color online) The minimum spanning tree formed from randomized data for the USD prices. This shows only the structure

imposed on the tree by the triangle effect.

is important when constructing the MST since there is
an asymmetry between how positive and negative correla-
tions are represented as distances. In particular, the
MST picks out the smallest distances, i.e., the highest corre-
lation. A large negative correlation gives rise to a large dis-
tance between nodes. Thus a connection between two nodes
will be missing from the tree even though it would be in-
cluded if the other currency in the pair were used as the base
currency.

Consider the following example. There is a large negative

correlation between the returns of the two currency pairs
GBP/USD and USD/CHF [28]. Conversely, if we put them
both with USD as the base currency, we get a large positive
correlation between USD/GBP and USD/CHF. Thus our
choice will give rise to a fundamentally different tree struc-
ture. For this reason, we perform the analysis for all possible
currency pairs against each other. Since we are analyzing ten
currency pairs, this gives us 11 separate currencies and hence
110 possible currency pairs (and hence n=110 nodes). How-
ever, there are constraints on these time series and hence an
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FIG. 4. (Color online) Comparison of the degree distributions
for the trees shown in Fig. 2 (real data) and Fig. 3 (randomized
data).

intrinsic structure is imposed on the tree by the relationships
between the time series. This is commonly known as the
“triangle effect.” Consider the three exchange rates USD/
CHF, GBP/USD, and GBP/CHE. The nth element of the time
series for GBP/CHF is simply the product of the nth ele-
ments of USD/CHF and GBP/USD. This simple relationship
between the time series gives rise to some relationships be-
tween the correlations. More generally, with three time series
P (1), Py(1), P5(r) such that P5(t)=P,(t)P,(t), there exist re-
lationships between the correlations and variances of the re-
turns. If we define the returns r; such that r;=In P; for all i,
then we have

r3=r1+r2. (4)

Thus

GOLD

GOLDNZD

GOLDSEK

GOLDGBP

GOLDJPY

FIG. 5. (Color online) The cluster of GOLD exchange rates
from Fig. 2.
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Var(r;) = Var(r, + r,) (5)

=E((ry +1r)?) = [E(ry + r) . (6)

For currency pairs, it is valid to assume that the expected
value of the return is zero [29]. Hence this expression sim-
plifies to

0% = E(r% + r% +2rr,) (7)
=O%+O'§+2COV(V1,1"2) (8)
_ 2, 2

=01+ 05+ 2010501y, )

where o, 0,, o3 are the variances of the returns (1), r,(z),
r5(t) while p,, is the correlation between the returns r(z) and
r5(7). Finally we obtain

b
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FIG. 7. (Color online) Single step survival ratio as a function
of oT.
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Hence there is a structure forced upon the market by the
triangle effect. This is not a problem since all the cross rates
we include in the tree do exist and the correlations calculated
are the true correlations between the returns. Even though
the values of these correlations have some relationships be-
tween them, they should be included in the tree since it is
precisely this market structure that we are attempting to iden-
tify. We do, however, need to confirm that this structure
which is being imposed on the market is not dominating our
results.

IV. DIRECTED TREES

In [30], the minimum spanning tree approach was gener-
alized by considering a directed graph. Lagged correlations
were investigated in an attempt to determine whether the
movement of one stock price “preceded” the movement in
another stock price. We now investigate whether this ap-
proach yields useful results here. First we should define what
we mean by lagged correlation. If we have two time series,
x;(t) and x;(t) where both time series contain N elements, the
7-lagged correlation is given by

pi(7) = (it + 1)x;(0)) = (e + 7))x(1)) ’ (11)

Ui,TUj

where (---) indicates a time-average over the N— 7 elements
and o, , 0; are the sample standard deviations of the time
series x;(t+7) and x/(t), respectively. Note that autocorrela-
tion is simply the special case of this where i=j. Armed with
this definition, we can now look at our data to see whether

PHYSICAL REVIEW E 72, 046106 (2005)

there are any significant lagged correlations between returns
of different currency pairs. Figure 1 shows the lagged corre-
lation between the returns of each pair of currencies when
the prices of those currencies are given with GBP as the base
currency. In the figure, AUD vs USD (lagged) refers to the
lagged correlation between GBP/AUD (at time 7+7) and
GBP/USD (at time 7). The results in this figure are represen-
tative of the results from all currency pairs included in our
study.

Figure 1 clearly shows that the approach considered in
[30] will not yield anything useful here for FX. If such
lagged correlations do exist between currency pairs, they oc-
cur over a time scale smaller than 1 h. In other words, the
FX market is very efficient. This should not come as a
surprise—the FX market is approximately 200 times as lig-
uid as the equities market [6].

V. THE CURRENCY TREE

Creating all the possible cross rates from the 11 currency
pairs gives rise to a total of n=110 different time series. It is
here that the approach of constructing the MST comes into
its own, since 110 different currencies yields an enormous
correlation matrix containing 5995 separate elements. This is
far too much information to allow any practical analysis by
eye. However, as can be seen from Fig. 2, the hourly FX tree
is quite easy to look at. Rather than a mass of numbers, we
now have a graphical representation of the complex system
in which the structure of the system is visible.

Before analyzing the tree in detail, it is instructive to con-
sider first what effect the constraints of Eq. (12) (the “tri-
angle effect”) will have on the shape of the tree. Figure 3
illustrates this. The data used in this figure is the same data
as in Fig. 2, however, the price series for the currencies in
USD were randomized before the cross rates were formed.
This process gives prices for the various currencies in USD
which are random, and will hence have negligible correlation
between their returns. Thus Fig. 3 shows the structure forced
on the tree by the triangle effect.

This tree resulting from randomizing data as described
above, is actually very different in character from the
true tree in Fig. 2. At first glance it might appear that some
aspects are similar—currencies show some clustering in
both cases. However, in the tree of real cross rates there
are currency clusters forming about any node, whereas in
Fig. 3 there are only clusters centered on the USD node.
This is not surprising: after all, what do the “CHF/
everything” rates all have in common in the case of random
prices other than the CHF/USD rate? The best way to inter-
pret Fig. 3 is that we have a tree of USD nodes (which are
spaced out since their returns are poorly correlated) and
around these nodes we have clusters of other nodes which
have the same base currency, and which are effectively the
information from the USD node plus noise. This exercise
shows us that the MST results are not dominated by the
triangle effect. In an effort to show this in a more quantita-
tive way, we investigate the proportion of links that are
present in both trees. Less than one-third of the edges in Fig.
2 are present in Fig. 3.
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Another more quantitative comparison is to compare the
degree distribution of the tree from the random price series
with that of the tree from real price data. This is shown
graphically in Fig. 4. Again, this further highlights the dif-
ferences between the two trees.

Now that we have produced the tree, how does one inter-
pret it? Despite the initial impression, the tree is actually
very easy to interpret. It contains colored nodes, each of
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which represents a particular currency pair. For the reasons
explained earlier, currency pairs are quoted both ways
around: USD/JPY appears with USD as the base currency, as
is normal market convention, but so does JPY/USD. This
gives all currencies the chance to stand out as a cluster, as
will be seen shortly. The currency-pair nodes are each color
coded, according to the labeled base currency. Broadly
speaking, each node is linked to the nodes representing the
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FIG. 10. (Color online) Currency tree (MST) for a 2 week period in July 2004.

currency pairs to which it is most closely correlated. The
observation that certain currency pairs cluster together means
that they have been moving together consistently over the
monitored period.

The most interesting feature of Fig. 2 is the clustering of
nodes which have the same base currency. For example, one
can see a cluster of 9 AUD nodes. This observation demon-
strates that over this 2 year period, the Australian Dollar has
been moving systematically against a range of other curren-
cies during this time. To use the prevailing industry term, the
AUD is “in play.” The same is also true for the SEK, JPY,
and GOLD clusters.

It is encouraging that the cluster of GOLD exchange rates
links currencies in a sensible way. This cluster is redrawn in
Fig. 5. It can be seen that the nodes in this cluster are
grouped in an economically meaningful way: remarkably,
there is a geographical linking of exchange rates. The Aus-
tralasian nodes, AUD and NZD, are linked, as are the Ameri-
can ones (USD and CAD). The Skandinavian currencies,
SEK and NOK, are also linked. Finally, there is a European

cluster of GBP, CHF, and EUR. This provides a useful check
that our results are sensible. Indeed if such geographical
clustering had not arisen, it would be a good indication that
something was wrong with our methodology.

Now that it is possible to identify clusters of currencies,
we would like to quantify how clustered they are. This can
be done by finding the level one has to partition the hierar-
chical tree associated with the MST [15] to get all the nodes
with, for example, USD as the base currency into the same
cluster. This results in a self-clustering distance for each cur-
rency. The smaller this distance is, the more tightly all the
nodes for that currency are clustered. An alternative way to
think of this is as the maximum ultrametric distance between
any two nodes for that currency.

We are now in a position to compare the results produced
by the MST with those from the original distance matrix. Let
us compare the self-clustering distance for each currency
with the maximum Euclidean distance between any two
nodes with that base currency and also with the average Eu-
clidean distance between all nodes with that base currency.
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This is shown in Fig. 6. It can be seen that the agreement
between the two results is very good. Not only does the MST
rank the clusters in the same way as the original distance
matrix does, it gives results which agree better with the av-
erage distance than with the maximum Euclidean distance.
Hence the results for the MST and the original distance ma-
trix are not only in agreement, the MST results are also ro-
bust with respect to a single, large edge being contained
between two nodes with the same base currency. As men-
tined above, the MST has the advantage over standard net-
work representations since it only requires n—1 connections.

VI. STABILITY AND TEMPORAL EVOLUTION OF THE
CURRENCY TREE

We now investigate the single-step survival ratio of the
edges

— |Et N Et+5z|

: 12
2] (12)

O

where E, and E,, 5 represent the set of edges present in the
trees formed from a dataset of length 7=1000 h [31] begin-
ning at times ¢ and ¢+ J, respectively, in order to see how
this ratio depends on the value chosen for &¢. This ratio must
tend to one as ot approaches O for our results to be meaning-
ful. The results are plotted in Fig. 7 and it can be seen that it
is indeed the case that this ratio tends to one as ot approaches
0. Thus the topology of the MST is stable.

Next we investigate the time-dependence of the tree. On-
nela [9] defined the k multistep survival ratio to be

|Ez NE 5N - N Et+k51|

13

Otk =

Thus if a link disappears for only one of the trees in the time
t to t+or and then comes back, it is not counted in this
survival ratio. This seems a possibly overly restrictive defi-
nition which might underestimate the survival. We will there-
fore also consider the more generous definition

|Et N Et+k5t|

14

Otk =

This quantity will, for large values of k, include cases where
the links disappear and then come back several time steps
later. It therefore tends to overestimate the survival since a
reappearance after such a long gap is more likely to be
caused by a changing structure than by a brief, insignificant
fluctuation.

Figure 8 shows both definitions and uses a time-window
of length 7=1000 h and a time step dt=1 h. It can be seen
from the figure that the two lines form a “corridor” for the
multistep survival ratio. This is because the overrestrictive
definition of Eq. (13) underestimates the survival and the
overgenerous definition of Eq. (14) overestimates the result.
It is particularly noteworthy that even with the overrestric-
tive definition of Eq. (13), the survival of links after the end
of 2 years is only just below 50% (i.e., 54/109). In other
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words, there are strong correlations existing between
exchange-rate returns that are extremely long-lived.

VII. INTERPRETATION OF TREES FROM RECENT DATA

We know from our analysis that clusters occur in the
MST, and that these clusters change over time. Next we il-
lustrate the significance of this in practice. We will approach
this by analyzing two trees which are one calendar month
apart.

Figure 9 shows an example of a currency tree from a
period in June 2004. Figure 9 shows a strong, brown, NZD
cluster near the bottom of the tree. The NZD is “in play,” to
use the prevailing industry term introduced above. The self-
clustering distance for NZD is 0.845. The same is true for the
yellow-colored Canadian dollar (CAD), which has also
formed a cluster, with a self-clustering distance of 0.932.
Other clusters are also evident, including a red Swiss franc
(CHF) cluster, which has formed near the top of the tree. In
contrast, the Sterling currency-pairs are dispersed around the
tree, indicating that there is little in common in their behav-
ior. In short, Sterling is not “in play.”

If the trees were static, this would be the end of the story.
However, we have already shown that the trees do change
over time. Figure 10 shows the equivalent currency-tree
1 month later. The CAD cluster is still evident and, in fact,
has strengthened: all nine CAD nodes are linked together and
the self-clustering distance is now at the smaller value of
0.808. The NZD cluster is still evident, this time near the top
of the figure and is, in fact, slightly stronger with a self-
clustering distance of 0.78. More interesting are the clusters
which have changed. The CHF cluster has completely disin-
tegrated; the CHF nodes are scattered over the tree. Hence
the Swiss franc is no longer in play. Conversely, there is now
an American dollar (USD) cluster which has formed, indicat-
ing that the dollar has become more important in determining
currency moves.

In short, it has become possible to identify currencies
which are actively in play and are effectively dominating the
FX market. Sometimes, when currencies are in play, it will
be obvious to traders: for example, when there is a large and
sustained USD move. However, this is not always the case,
and our currency trees are able to provide an indication of
how important (i.e., how much in play) a particular currency
is. In addition to using the tree as a graphical tool, it is
possible to quantify how clustered a particular currency is by
calculating the self-clustering distance.

VIII. CONCLUSIONS

We have provided a detailed analysis of the minimal span-
ning trees associated with empirical foreign exchange data.
This analysis has highlighted various data-related features
which make this study quite distinct from earlier work on
equities.

We have shown that there is a clear difference between
the currency trees formed from real markets and those
formed from randomized data. For the trees from real mar-
kets, there is a clear regional clustering. We have also inves-
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tigated the time-dependence of the trees. Even though the
market structure does change rapidly enough to identify
changes in which currency pairs are clustering together, there
are links in the tree which last over the entire 2 year period.
This shows that there is a certain robust structure to the FX
markets. We have also developed a methodology for inter-
preting the trees which has practical applications: the trees
can be used to identify currencies which are in play. While
this does not have predictive power, it helps one to identify
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more accurately the state the market is currently in. Armed
with this information, one can be more confident of the pre-
dictions made from other models. In future work, we will
look at trying to isolate the effect of news on the FX
market—in other words, the extent to which external news
“shakes” the FX tree. Of particular interest is whether par-
ticular clusters have increased robustness over others, or not.
In addition, we shall be investigating how tree structure de-
pends on the frequency of the data used.
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